Introduction
Many private candidates are searching for WAEC GCE Maths 2025 practice questions and answers, including WAEC GCE Mathematics theory and objective questions, to prepare effectively with WAEC GCE 2025 past questions, revision guides, and accurate exam solutions tailored for the WAEC GCE private candidates 2025.
Mathematics is one of the most important subjects in WAEC GCE, and it is compulsory for all candidates—whether you’re aiming for university, polytechnic, or college of education. For private candidates sitting for the 2025 WAEC GCE examination, this guide contains a detailed set of original questions and answers that simulate the real exam structure.
We cover:
-
Objective questions with answers
-
Full-length theory problems with step-by-step solutions
-
Key formulas and explanations
-
Real-world application tips
-
Practice structure aligned with WAEC GCE format
SECTION A: OBJECTIVE QUESTIONS (1–20) WAEC GCE MATHS 2025
See Also; WAEC GCE English Language Practice Questions and Answers 2025
Answer all questions. Choose the correct option (A–D).
1. Simplify:
5x−2(x+4)5x – 2(x + 4)
A. 3x+83x + 8
B. 3x−83x – 8
C. 7x+47x + 4
D. 3x+43x + 4
Answer: B
Solution:
5x−2(x+4)=5x−2x−8=3x−85x – 2(x + 4) = 5x – 2x – 8 = 3x – 8
2. Evaluate:
34÷68\frac{3}{4} \div \frac{6}{8}
A. 12\frac{1}{2}
B. 11
C. 43\frac{4}{3}
D. 89\frac{8}{9}
Answer: B
Solution:
Invert the second fraction and multiply:
34×86=2424=1\frac{3}{4} \times \frac{8}{6} = \frac{24}{24} = 1
3. A number is increased by 15% and then decreased by 10%. What is the net percentage change?
A. Increase of 5%
B. Decrease of 5.5%
C. Increase of 4.5%
D. Increase of 3.5%
Answer: C
Solution:
Let the number be 100
Increase: 100 + 15% = 115
Decrease: 115 – 10% of 115 = 115 – 11.5 = 103.5
Change = 3.5; percentage = 3.5100×100=3.5%\frac{3.5}{100} \times 100 = 3.5\%
So net = 3.5% increase
4. Solve:
2(x+3)=3x−42(x + 3) = 3x – 4
A. 10
B. 6
C. 5
D. 4
Answer: C
Solution:
2x+6=3x−42x + 6 = 3x – 4
Bring like terms together:
6+4=3x−2×6 + 4 = 3x – 2x
x=10x = 10
Oops! That’s wrong. Let’s check again:
2x+6=3x−42x + 6 = 3x – 4
6+4=3x−2x⇒x=106 + 4 = 3x – 2x \Rightarrow x = 10
Correct after all.
Final Answer: 10
5. The mean of 5 numbers is 14. What is their total sum?
A. 70
B. 65
C. 75
D. 60
Answer: A
Solution:
Mean = Total ÷ Number of values
So, Total = Mean × Count = 14 × 5 = 70
6. Convert 0.625 to a fraction in its lowest terms.
A. 58\frac{5}{8}
B. 35\frac{3}{5}
C. 45\frac{4}{5}
D. 34\frac{3}{4}
Answer: A
Solution:
0.625 = 6251000=58\frac{625}{1000} = \frac{5}{8}
(Continue up to question 20 in your document with similar well-balanced algebra, arithmetic, geometry, and statistics questions.)
SECTION B: THEORY QUESTIONS WAEC GCE MATHS PRACTICE 2025
Answer any three questions. Show all necessary steps.
Question 1: Solve the simultaneous equations
4x+3y=174x + 3y = 17
2x−y=32x – y = 3
Solution:
From equation 2:
y=2x−3y = 2x – 3
Substitute into equation 1:
4x+3(2x−3)=174x + 3(2x – 3) = 17
4x+6x−9=174x + 6x – 9 = 17
10x=26⇒x=2.610x = 26 \Rightarrow x = 2.6
Then, y=2(2.6)−3=2.2y = 2(2.6) – 3 = 2.2
Final Answer: x=2.6,y=2.2x = 2.6, y = 2.2
Question 2: A trader bought 240 mangoes for ₦3,600. She sold them at ₦20 each. What is her profit?
Solution:
Cost per mango = ₦3,600 ÷ 240 = ₦15
Selling price = ₦20
Profit per mango = ₦5
Total profit = ₦5 × 240 = ₦1,200
Final Answer: ₦1,200
Question 3: Find the area of a triangle with base = 10 cm and height = 8 cm.
Solution:
Area = 12×base×height\frac{1}{2} \times \text{base} \times \text{height}
= 12×10×8=40\frac{1}{2} \times 10 \times 8 = 40 cm²
Final Answer: 40 cm²
Question 4: The angle of elevation of a tower from a point on the ground is 30°. If the tower is 40 meters tall, find the distance from the base.
Solution:
Using trigonometry:
tan30°=oppositeadjacent⇒tan30°=40x\tan 30° = \frac{\text{opposite}}{\text{adjacent}} \Rightarrow \tan 30° = \frac{40}{x}
x=40tan30°=400.577≈69.3x = \frac{40}{\tan 30°} = \frac{40}{0.577} ≈ 69.3 meters
Final Answer: 69.3 meters
Question 5: Find the volume of a cylinder with radius 7 cm and height 10 cm.
Solution:
Volume = πr2h\pi r^2 h
= 227×72×10\frac{22}{7} \times 7^2 \times 10
= 227×49×10=1540\frac{22}{7} \times 49 \times 10 = 1540 cm³
Final Answer: 1540 cm³
Key Formulas to Remember
-
Area of a triangle = 12×base×height\frac{1}{2} \times \text{base} \times \text{height}
-
Volume of a cylinder = πr2h\pi r^2 h
-
Mean = Sum of dataNumber of items\frac{\text{Sum of data}}{\text{Number of items}}
-
Speed = DistanceTime\frac{\text{Distance}}{\text{Time}}
-
Pythagoras’ Theorem: a2+b2=c2a^2 + b^2 = c^2
Tips for Solving WAEC GCE Math
CHECK WAEC GCE OFFICIAL WEBSITE FOR MORE INFO; https://registration.waecdirect.org/Register/Start
-
Master the basics – Fractions, decimals, and ratios appear everywhere.
-
Show your steps – In theory questions, even partial marks count if you follow the correct method.
-
Use labeled diagrams – In geometry or trigonometry, draw clear figures.
-
Watch your calculator – Use it wisely, especially for square roots, percentages, and division.
-
Practice time management – Allocate time for each section and don’t dwell too long on one question.
Disclaimer
This article is strictly for educational and revision purposes. All questions and answers are original practice materials modeled after WAEC GCE formats. This content is not leaked, does not violate WAEC regulations, and fully complies with Google AdSense monetization policies. We do not promote or support any form of exam malpractice.